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PREFACE

Adaptive filtering is a topic of immense practical relevance and deep theoretical challenges
that persist even to this date. There are several notable texts on the subject that describe
many of the features that have marvelled students and researchers over the years. In this
textbook, we choose to step back and to take a broad look at the field. In so doing, we
feel that we are able to bring forth, to the benefit of the reader, extensive commonalities
that exist among different classes of adaptive algorithms and even among different filtering
theories. We are also able to provide a uniform treatment of the subject in a manner that
addresses some existing limitations, provides additional insights, and allows for extensions
of current theory.

We do not have any illusions about the difficulties that arise in any attempt at un-
derstanding adaptive filters more fully. This is because adaptive filters are, by design,
time-variant, nonlinear, and stochastic systems. Anyone of these qualifications alone would
have resulted in a formidable system to study. Put them together and you face an almost
impossible task. It is no wonder then that current practice tends to study different adaptive
schemes separately, with techniques and assumptions that are usually more suitable for one
adaptation form over another. It is also no surprise that most treatments of adaptive filters,
including the one adopted in this textbook, need to rely on some simplifying assumptions
in order to make filter analysis and design a more tractable objective.

Still, in our view, three desirable features of any study of adaptive filters would be (1)
to attempt to keep the number of simplifying assumptions to a minimum, (2) to delay
their use until necessary, and (3) to apply similar assumptions uniformly across different
classes of adaptive algorithms. This last feature enables us to evaluate and compare the
performance of adaptive schemes under similar assumptions on the data, while delaying the
use of assumptions enables us to extract the most information possible about actual filter
performance. In our discussions in this book we pay particular attention to these three
features throughout the presentation.

In addition, we share the conviction that a thorough understanding of the performance
and limitations of adaptive filters requires a solid grasp of the fundamentals of least-mean-
squares estimation theory. These fundamentals help the designer understand what it is
that an adaptive filter is trying to accomplish and how well it performs in this regard. For
this reason, the first three chapters of the book are designed to provide the reader with a
self-contained and easy-to-follow exposition of estimation theory, with a focus on topics that
are relevant to the subject matter of the book. In these initial chapters, special emphasis
is placed on geometric interpretations of several fundamental results. The reader is advised
to pay close attention to these interpretations since it will become clear, time and again,
that cumbersome algebraic manipulations can often be simplified by recourse to geometric
constructions. These constructions not only provide a more lasting appreciation for the
results of the book, but they also expose the reader to powerful tools that can be useful in
other contexts as well, other than adaptive filtering and estimation theory.

xix



Preface

The reader is further advised to master the convenience of the vector notation, which

is used extensively throughout this book. Besides allowing a compact exposition of ideas

and a compact representation of results, the vector notation also allows us to exploit, to

great effect several important results from linear algebra and Inatrix theory and to capture,

in elegant ways, many revealing characteristics of adaptive filters. We cannot emphasize

strongly enough the importance of linear algebraic and matrix tools in our presentation, as

well as the elegance that they bring to the subject. The combined power of the geometric

point of view and the vector notation are perhaps best exemplified by our detailed treatment

later in this book of least-squares theory and its algorithmic variants. Of course, the reader

is exposed to geometric and vector formulations in the early chapters of the book already,
including the first chapter.

Style of the Book

Each chapter in the book consists generally of five distinctive parts in the following order:
i) concepts, ii) bibliographic notes, iii) problems, iv) computer projects, and v) appendices.

i) Concepts. In the early chapters, each concept is motivated from first principles;
starting from the obvious and ending with the more advanced. We follow this route
of presentation until the reader develops enough maturity in the field. As the book
progresses, we expect the reader to become more sophisticated and, therefore, we cut
back on the "obvious". While for some advanced readers and researchers the "obvious"
part in the initial chapters might seem at first unnecessary, please keep in mind that
the primary readers of any textbook are novices to the field. From our experience
over the years, teaching from early drafts of this manuscript, students have been
particularly receptive to this line of presentation. In addition, for ease of reference, we
have collected at the end of each chapter a summary of the key concepts and results.

ii) Bibliographic Notes. In the remarks at the end of each chapter we provide a wealth of
references on the main contributors to the results discussed in the text. Rather than
scatter references throughout the chapter, we find it useful to collect all references at
the concluding section of each chapter in the form of a narrative. We believe that this
way of presentation gives the reader a more focused perspective on how the references
and the contributions relate to each other both in time and context.

iii) Problems. The book contains a significant number of problems, some more challenging

than others and some more applied than others. The problems should be viewed as
an integral part of the text, especially since many additional and interesting results
appear in them. It was for this reason, and also for the benefit of the reader, that
we have chosen to formulate and design all problems in a guided manner. Usually,
and especially in the more challenging cases, a problem starts by stating its objective
followed by a sequence of guided steps until the final answer is attained. The answer
to each step appears stated in the body of the problem. In this way, a reader would
know what the answer should be, even if he fails to solve the problem. Thus rather
than ask the reader to "find an expression for t", we would instead ask him to "verify
that is given by = .. and then give the expression for x.

All instructors can request copies of a complete
solutions manual from the publisher.

Moreover, several problems in the book have been designed to introduce readers to
ideas of interest from related fields, such as multi-antenna receivers, cyclic-prefixing,



Preface xxi

tnaximal ratio cornbining, OFDM receivers, COMA receivers, and so forth. Students
are usua.lly surprised to learn how classical concepts and ideas form the underpinnings
of seemingly advanced techniques.

iv) Computer Projects. We have included several computer projects to show students,
and also practitioners, how the results developed in the book can be useful in situ-
ations of practical interest (e.g., linear equalization, decision feedback equalization,
channel esthnation, beamforming, tracking fading channels, linc echo cancellation,

acoustic echo cancellation, active noise control, OFDM receivers, CDMA receivers,

finite-precision implementations). In designing these projects, we have rnade an effort

at choosing topics that are relevant to practitioners. We have also made an effort

at illustrating to students how a solid theoretical understanding can guide them in

challenging situations. All computer projects in the book are followed by extensive

commentary and typical performance plots. Complete MATLAB I programs are avail-

able for solving all computer projects.

Detailed MAT LAB programs that solve all computer projects in the book

can be downloaded by all readers from the publisher's website:
(filtering/

v) Appendices. Rather than collect all appendices at the end of the book, we have opted

to place each appendix at the end of the chapter where it is called upon. In this way,

the usefulness of the material in an appendix, and its relation to the discussion in
the chapter, would become more evident to the reader. For example, although most

students would have had some exposure to linear algebra and matrix theory before

a course on adaptive filtering, we provide a handful of self-contained appendices that

explain all the required concepts for the purposes of this book (e.g., rank and range

spaces of matrices, solutions of linear equations, Schur complements, singular value de-

composition, Cholesky decomposition, etc). Since each appendix is placed right where

the concepts are first needed, students will be able to appreciate firsthand the elegance

that such concepts bring to the presentation. Actually, after progressing sumciently

enough in the book, students will be able to master many useful concepts from linear

algebra and matrix theory, in addition to adaptive filtering.

Organization of the Book

The material in the book can be categorized into five broad areas, as listed in Table P. 1.

Area I covers the fundamentals of least-mean-squares estimation theory with several appli-

cation examples. Areas Il and Ill deal mainly with LMS-type adaptive filters, while areas IV

and V deal with least-squares-type adaptive filters. If an instructor wishes to focus mostly

on LMS-type filters, then he can do so by covering only material from within areas Il and

Ill. Even in this case, students will still be exposed to the recursive-least-squares (RLS) algo-

rithm and its performance results from the discussions in Chapter 5 and Area Ill. However,

for a more-in-depth treatment of RLS and its many variants, instructors will need to select

chapters from within Area IV as well.

Dependencies among chapters. Figure P. 1 illustrates the dependencies among the chapters

in the book. In the figure, the material in a chapter that is at the receiving end of an arrow

requires some (but not necessarily all) of the material from the chapter at the origin of the

I MATLAB is a trademark of the MathWorks Inc.
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Table P. 1. A breakdown of the book chapters into general topic areas.

Category

I. Introduction and Foundations

ll. Stochastic—Gradient Methods

Ill. Performance Analyses

IV. Least-Squares Methods

V. Indefinite Least—Squares

1. Optimal
estimation

Area Il:
Stochastic
Gradient

Methods

6. Steady-state
performance

7. Tracking
performance

2. Linear
estimation

4. Steepest
descent methods

5. Stochastic
gradient algorithms

10. Block
adaptive filters

Area 111:
Performance

Analyses

Chapters
1. Optimal estimation.
2. Linear estimation.
3. Constrained linear estimation.
4. Steepest—descent algorithms.
5. Stochastic—gradient algorithms.
10. Block adaptive filters.

6. Steady-state performance of adaptive filters.
7. Tracking performance of adaptive filters.
8. Finite—precision effects.
9. Transient performance of adaptive filters.
11. The least-squares criterion.
12. Recursive least—squares.

13. RLS array algorithms.
14. Fast fixed—order filters.
15. Lattice filters.

16. Laguerre adaptive filters.
17. Robust adaptive filters.

3. Constrained
Area l: Introduction and Foundations

linear estimation

Area IV: Least-Squares Methods

11. Least-squares
criterion

12. Recursive
least-squares

13. RLS array
algorithms

14. Fast fixed 15. Lattice
order filters filters

e. Finite-precision 9. Transient
17. Robust
adaptive filters

16.Laguerre
adaptive tilters

Area V: Indefinite Least-squares

effects perforrnance

Figure P. I. Dependencies among the chapters. Instructors can design differ-
ent course sequences in accordance with their needs and interests.
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arrow. A dashed arrow indicates that the dependency between the respective chapters is
weak and, if desired, the chapters can be covered independently of each other. For example,
in order to cover Chapter 6, the instructor would need to cover Chapter 5, which, in turn,
relies on Chapters 4 and 2. The material in Chapter 1 is not necessary for Chapter 2 but
it is useful for a better understanding of it; actually, the material in Chapter 1 is presented
in such a way that it also provides a useful review of basic probability theory concepts.

Figure P.l can be used by instructors to design different course sequences according
to their needs and interests. For example, if the instructor is interested in covering only

LMS-type adaptive filters and in studying their performance, then one possibility is to cover

material from within Chapters 2, 4, 5, 6, 7, and 9. Later, in Table P.4, we list the key
sections from within each chapter; the other sections usually contain more advanced mate-
rial, which students can read once they understand the key concepts from the main sections.

List of appendices. The book contains over 40 appendices that complement the material

in the chapters and provide useful reviews and further analyses and connections. All ap-

pendices are listed in Table P.2. Readers interested in a quick review of basic linear algebra

and matrix theory concepts may consult initially Apps. I.A, 2.A, and 3.A, and subsequently
Apps. 9.H, 11.B, 11.C, 13.A, 14.A, and 14.B for more advanced topics. These appendices
are highlighted by the symbol * in Table P.2. Readers interested in a quick review of basic
probability theory concepts should consult Secs. 1.1—1.4 and App. I.B.

Computer projects. The book contains 24 computer projects that have been designed to re-

inforce the concepts discussed in the chapters. The projects are listed in Table P.3, and most

of them cover topics of interest in communications and signal processing such as channel es-
timation, linear equalization (adaptive and channel-estimation based), decision-feedback

equalization (also adaptive and channel-estimation based), adaptive blind equalization,
CDMA and RAKE receivers, OFDM receivers, tracking of Rayleigh fading channels, line echo
cancellation, acoustic echo cancellation, active noise control, beamforming, finite-precision

effects, etc. Detailed MAT LAB programs that solve all projects can be downloaded by all

readers from the publisher's website (ftp://ftp.wiley.com/public/sci-tech-med/filtering/).

These programs are offered without any guarantees. While we have found them to be ef-

fective for the instructional purposes of this textbook, the programs are not intended to be

examples of full-blown or optimized designs; practitioners should use them at their own risk.

For example, in order to keep the codes at a level that is easy to understand by students,

we have often decided to sacrifice performance in lieu of simplicity.

Audience

The book is intended for a graduate-level course on adaptive filtering. Although it is ben-

eficial that students have some familiarity with basic concepts from matrix theory, linear

algebra, and random variables, the book includes several appendices on background mate-
rial in these areas. The review is done in a motivated manner and is tailored to the needs
of the presentation. from our experience, these reviews are sufficient for a thorough under-
standing of the discussions in the book. In addition, several of the problems reinforce the
linear algebraic and matrix concepts, so much so that students will get valuable training
in linear algebra and matrix theory, in addition to adaptive filtering, from reading (and
understanding) this book.

The book is also intended to be a reference for researchers, which explains why we have

chosen to include some advanced topics in several places. As a result, the book contains

ample material for instructors to design courses according to their interests. Clearly, we

do not expect instructors to cover all the material in the book in a typical course offering;
such an objective would be counter-productive and even impossible. In our own teaching of
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Table P.2. A listing of all appendices in the book, Appendices highlighted
by the symbol provide reviews of linenr algebra and matrix theory concepts.

Appendix Title
Hermitian and positive-definite matrices.

1.13 Gaussian random variables.
Range spaces and nullspaces of matrices.

2.13 Complex gradients and Hessians.
2.c The Kalman filter.
3.A* Schur complements.
3.B A primer on channel equalization.
3.c Causal Wiener-Hopf filtering.
6.A Interpretations of the energy relation.

Relating €—NLMS to L MS.

6.c Affine projection performance condition.
Stability bound.

9.B Stability of e—NLMS.

Adaptive filters with error nonlinearities.
Convergence time of adaptive filters.

9.E Learning behavior of adaptive filters.
9.F Independence and averaging analysis.
9.G Physical interpretation of energy relation.
9.H* Kronecker products.

IO.A DCT-transformed regressors.

IO.B More constrained DFT block filters.

10.c Overlap-add DFT-based block adaptive filters.

10.1) DCT-based block adaptive filters.

IO.E DHT-based block adaptive filters.

11.A Equivalence results in linear estimation.

11.B* The QR decomposition.

11.C* The singular value decomposition.

12.A Kalman filtering and recursive least-squares.

12.B Extended RLS algorithms.

13.A* Unitary transformations.

13.13 Array algorithms for Kalman filtering.

14.A* Hyperbolic rotations.

14.B* Hyperbolic basis rotations.

14.c Backward consistency and minimality.

14.1) The Chandrasekhar filter.

16.A Modeling with orthonormal basis functions.

16.B Efficient matrix-vector multiplication.

16.c Lyapunov equations.

17.A Arbitrary coefficient matrices.

17.B Total-least-squares.

17.c HOO filters.

17.D Stationary points.
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Table P.3. A listing of all computer projects in the book. MATLAB programs

that solve these projects can be downloaded by all readers from the publisher's

website (ftp://ftp.wiley.com/public/sci-tech-med/filtering/).

Computer project Topic
1 Comparing optimal and suboptimal estimators.

2 Linear equalization and decision devices.

3.1 Beamforming.

3.2 Decision-feedback equalization.

Constant-modulus criterion.

4.2 Linear prediction.

5.1 Constant-modulus algorithm.

5.2 Adaptive channel equalization.

5.3 Blind adaptive equalization.

6 Line echo cancellation.

7 Tracking Rayleigh fading channels.

8 Quantization effects in adaptive filtering.
9 Transient behavior of L MS and LMF.

10 Acoustic echo cancellation.

11.1 Amplitude tone detection.

11.2 An OFDM receiver.

11.3 CDMA and RAKE receivers.
12.1 Channel estimation with insuffcient excitation.
12.2 TYacking a Rayleigh fading channel by extended RLS.

13 Performance of array implementations in finite precision.

14 Stability issues in fast least-squares.
15 Performance of lattice filters in finite precision.

16 Laguerre and FIR implementations.

17 Active noise control.

the material, we instead focus on some key sections and request that students complement
the discussions by means of reading and problem solving. As explained below, several key
sections in the chapters have been designed to convey the main concepts; while the remain-
ing sections tend to include more advanced material and also illustrative examples. Once
students understand the basic principles, you will be amazed at how well they can follow
the other sections on their own and even solve the pertinent problems.

Guidelines to Instructors

As we explained before, instructors can use Fig. P. 1 to design different course sequences

according to their interests. For example, a course that is focused solely on LMS-type filters

and their performance can be designed by covering only material from within Chapters 2

and 4—9. Even then, instructors do not need to cover the entire material from each one of

these chapters. Instead, they need only cover some key sections and, if desired, ask students

to complement the discussions in class with reading material from the other more advanced

sections. To facilitate such a course planning, Table P.4 lists in boldface the key sections

for the different chapters in the book for both lecturing and reading purposes.

For example, the key sections in Chapter 2 are Sec, 2.1 (Normal Equations), Sec. 2.4

(Orthogonality Condition), and Sec. 2.6 (Linear Models). These sections formulate and solve
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the linear least-mean-squares estimation problem and specialize the results to the irnportant

class of linear models (which is frequent in applications). The other sections in Chapter 2

complement the discussions with design examples, among other things.

As a second example, Chapter 9 studies the transient performance of a large family of

adaptive filters in a uniform manner. The main idea is captured by the transient analysis of

the LMS algorithm in Sec. 9.5, which uses the machinery developed in Sec. 9.4. Once stu-

dents understand the framework as applied to L MS, they will be able to study the transient

analysis of the other filters mostly on their own. This is one key advantage of adopting and

emphasizing a uniform treatment of adaptive filter performance throughout our presenta-

tion. Similar remarks hold for the steady-state, tracking, and finite-precision performance

analyses of Chapters 6—8. It is sufficient to illustrate how the methodology applies to the

special case of LMS, for example, by covering Secs. 6.5, 7.5, and 8.5, which in turn rely on

the machinery developed in Secs. 6.4, 7.4, and 8.4. The remaining sections in Chapters 6—8

extend the same type of analysis to other (more demanding) adaptive filters. Here again,

students can do well in studying the extensions on their own if desired.

Table P.4. A suggested list of key sections (in boldface) for both lecturing and

reading in all chapters along with relevant complementary sections (in normal

font). At the instructor's discretion, some of the key sections for reading could,

of course, be covered during lecturing as well; especially those dealing with

basic review material on linear algebraic and matrix theory concepts.

Key sections for lecturing
Secs. 1.1, 1.2, 1.3, 1.4

secs. 2.1, 2.2, 2.3, 2.4, 2.5, 26

secs. 3.1, 3.2, 3.3, 3.4

secs. 4.1, 4.2, 4.3, 4.4, 45

Secs. 5.1, 5.2, 5.W5.6, 5.9

secs. 6.1, 6.2, 6.3-6.5

secs. 7.1,7.2, 7.3-7.5

secs. 8.1-8.5
secs. 9.1-9.3, 9.4, 9.5

secs. 10.1, 10.2, 10.3, 10.4, 10 5

Secs. 11.1—11.4

Secs. 12.1-12.3

secs. 13.1-13.3, 13.5, 13.6, App. 13.A

secs. 14.1

secs. 15.1, 15.2-15.4, 15.5, 15.6, 15.7

secs. 16.1-16.2, 16.8, 16 9

secs. 17.1 17 5

Some Features of Our Treatment

Key sections for reading
App. I.A
Apps. 2.A, 2.B, 2.C

Apps. 3.A, 3.13

secs. 5.6, 5.7, 5.8, 5.10

Secs. 6.6—6.10

Secs. 7.6-7.11

secs. 8+8.9
Secs. 9.6-9.7

Apps. 9.A, 9.B, 9.C, 9.1), 9.E

Apps. IO.A-IO.E

sec. 11.5, Apps. 11.A-11.C

Sec. 12.4, Apps. 12.A-12.B

Sec. 13.7

Secs. 14.2, 14.3-14.6

Apps. 14.AA4.B

Secs. 15.8, 15.9-15.13

Secs. 16.3-16.7, 16.10-14

Apps. 16.A—16.C
Apps. 17.AA7.D

There are some distinctive features in our treatment of adaptive filtering. Among other

features, experts will be able to notice the following contributions:

(a) We treat a large variety of adaptive algorithms, as listed in Tables P.5 and P.6 for
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both LMS-type and RLS-t,ype filters.

Table P.5. A list of LMS-type adaptive algorithms covered in the book.

Algorithm
CMS
NLMS
NLMS with power normalization
leaky-CMS

constrained LMS
LME
LMMN
sign-error LMS

sign-regressor LMS

sign-sign LMS
FxLMS
FeLMS

CMA
NCMA
RCA
MMA

DFT-domain LMS
DCT-domain LMS
DFT-based block LMS
DCT-based block LMS
DHT-based block LMS
closed and open-loop subband LMS

Robust filters

Description
Least-mean-squares algorithm

Normalized LMS

Least-mean-fourth algorithm

Least-mean-mixed norm algorithm

Filtered-x L MS

Filtered-error L MS

Affine projection algorithm
Constant modulus algorithm

Normalized CMA

Reduced constellation algorithm
Multi-modulus algorithm

Transform-domain LMS

A priori and a posteriori forms

(b) Chapters 6—9 study the mean-square performance of adaptive filters by resorting to

energy-conservation arguments. While the performance of different adaptive filters is

usually studied separately in the literature, the framework adopted in these chapters

applies uniformly across different classes of adaptive filters. In addition, the same

framework is used for steady-state analysis, transient analysis, tracking analysis, fixed-

point analysis, and robustness analysis.

(c) Chapter 10 studies block adaptive filters, and the related class of subband adaptive
filters, in a manner that clarifies the connections between these two families more

directly than prior treatments. Our presentation also indicates how to move beyond

DFT-based transforms and how to use other classes of orthogonal transforms for block

adaptive filtering.

(d) Chapters 11-15 provide a detailed treatment of least-squares adaptive filters that is
distinct from prevailing approaches in a handful of respects. First, we focus on regu-

larized least-squares problems from the onset and take the regularization factor into
account in all derivations. Second, we insist on deriving time- and order-update rela-

tions independent of any structure in the regression data (e.g., we do not require the

regressors to arise from a tapped-delay-line implementation). In this way, we are able

to develop efficient least-squares filtering even for some non-FIR structures. Third, we

emphasize the role and benefits of array-based schemes. And, finally, we highlight the

role of geometric constructions and the insights they bring into least-squares theory.
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Table P.O. A list, of RLS-typc adaptive algorithms covered in the book.

A gorithm
RLS

sliding-window RLS
block RLS
extended RLS
QR-RLS (square-root information RLS)
inverse-QR RLS (square-root RLS)
Fast array RLS

FAEST
Fast Kalman
a posteriori-based LSL
a priori-based LSL
a posteriori error-feedback LSL
a priori error-feedback LSL
Normalized LSL
Array-based LSL
Laguerre FTF
Laguerre FAEST
Laguerre fast Kalman
a posteriori-based Laguerre LSL
a priori-based Laguerre LSL
a posteriori error-feedback Laguerre LSL
a priori error-feedback Laguerre LSL
Normalized Laguerre LSL

Array-based Laguerre LSL

Kalman filter

Robust filters

escnptton
Recursive least-squares algorithm

Gauss-Newton algorithm

Multi-channel RLS

Array-based recursive least-squares

Fast transversal filter

Fast a posteriori error sequential technique

Least-squares lattice
Least-squares lattice

Extended FT F

Extended FAEST

Least-squares Laguerre lattice

A priori and a posteriori forms

(e) Chapter 16 shows how the theory of fast least-squares methods (both for fixed-order
and order-recursive problems) is not limited to tapped delay lines; an observation
that extends classical derivations and developments. In the chapter, we illustrate this
fact by studying Laguerre adaptive filters; they are obtained by replacing the delay
operators in an FIR structure by first-order all-pass functions. Although the resulting
regressors no longer possess shift-structure, it turns out that fast least-squares filters
are still possible.

(f) Chapter 17 develops the theory of robust adaptive filters by studying indefinite least-
squares problems and by relying on energy arguments as well. In the process, the
robustness and optimality properties of several adaptive filters are clarified. The pre-
sentation in this chapter is developed in a manner that parallels our treatment Of
least-squares problems in Chapters 11—12 so that readers can appreciate the similar-
ities and distinctions between both theories (classical least-squares versus indefinite
least-squares).

Westwood, CA
December 2002 Ali H. Sayed


